Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
Environ Pollut ; 304: 119141, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35301029

RESUMO

Fumonisin B1 (FB1) is a neurodegenerative mycotoxin synthesized by Fusarium spp., but the potential neurobehavioral toxicity effects in organisms have not been characterized clearly. Caenorhabditis elegans (C. elegans) has emerged as a promising model organism for neurotoxicological studies due to characteristics such as well-functioning nervous system and rich behavioral phenotypes. To investigate whether FB1 has neurobehavioral toxicity effects on C. elegans, the motor behavior, neuronal structure, neurotransmitter content, and gene expression related with neurotransmission of C. elegans were determined after exposed to 20-200 µg/mL FB1 for 24 h and 48 h, respectively. Results showed that FB1 caused behavioral defects, including body bends, head thrashes, crawling distance, mean speed, mean amplitude, mean wavelength, foraging behavior, and chemotaxis learning ability in a dose-, and time-dependent manner. In addition, when C. elegans was exposed to FB1 at a concentration of 200 µg/mL for 24 h and above 100 µg/mL for 48 h, the GABAergic and serotonergic neurons were damaged, but no effect on dopaminergic, glutamatergic, and cholinergic neurons. The relative content of GABA and serotonin decreased significantly. Furthermore, abnormal expression of mRNA levels associated with GABA and serotonin were found in nematodes treated with FB1, such as unc-30, unc-47, unc-49, exp-1, mod-5, cat-1, and tph-1. The neurobehavioral toxicity effect of FB1 may be mediated by abnormal neurotransmission of GABA and serotonin. This study provides useful information for understanding the neurotoxicity of FB1.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fumonisinas , Serotonina , Transmissão Sináptica , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/farmacologia , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
2.
J Neurosci ; 41(42): 8790-8800, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34470806

RESUMO

Social behaviors, including reproductive behaviors, often display sexual dimorphism. Lordosis, the measure of female sexual receptivity, is one of the most apparent sexually dimorphic reproductive behaviors. Lordosis is regulated by estrogen and progesterone (P4) acting within a hypothalamic-limbic circuit, consisting of the arcuate, medial preoptic, and ventromedial nuclei of the hypothalamus. Social cues are integrated into the circuit through the amygdala. The posterodorsal part of the medial amygdala (MeApd) is involved in sexually dimorphic social and reproductive behaviors, and sends projections to hypothalamic neuroendocrine regions. GABA from the MeApd appears to facilitate social behaviors, while glutamate may play the opposite role. To test these hypotheses, adult female vesicular GABA transporter (VGAT)-Cre and vesicular glutamate transporter 2 (VGluT2)-Cre mice were transfected with halorhodopsin (eNpHR)-expressing or channelrhodopsin-expressing adeno-associated viruses (AAVs), respectively, in the MeApd. The lordosis quotient (LQ) was measured following either photoinhibition of VGAT or photoexcitation of VGluT2 neurons, and brains were assessed for c-Fos immunohistochemistry (IHC). Photoinhibition of VGAT neurons in the MeApd decreased LQ, and decreased c-Fos expression within VGAT neurons, within the MeApd as a whole, and within the ventrolateral part of the ventromedial nucleus (VMHvl). Photoexcitation of VGluT2 neurons did not affect LQ, but did increase time spent self-grooming, and increased c-Fos expression within VGluT2 neurons in the MeApd. Neither condition altered c-Fos expression in the medial preoptic nucleus (MPN) or the arcuate nucleus (ARH). These data support a role for MeApd GABA in the facilitation of lordosis. Glutamate from the MeApd does not appear to be directly involved in the lordosis circuit, but appears to direct behavior away from social interactions.SIGNIFICANCE STATEMENT Lordosis, the measure of female sexual receptivity, is a sexually dimorphic behavior regulated within a hypothalamic-limbic circuit. Social cues are integrated through the amygdala, and the posterodorsal part of the medial amygdala (MeApd) is involved in sexually dimorphic social and reproductive behaviors. Photoinhibition of GABAergic neurons in the MeApd inhibited lordosis, while photoactivation of glutamate neurons had no effect on lordosis, but increased self-grooming. These data support a role for MeApd GABA in the facilitation of social behaviors and MeApd glutamate projections in anti-social interactions.


Assuntos
Complexo Nuclear Corticomedial/metabolismo , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Comportamento Social , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Animais , Feminino , Ácido Glutâmico/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
3.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576177

RESUMO

Eye-drop recombinant human nerve growth factor (ed-rhNGF) has proved to recover the retina and optic nerve damage in animal models, including the unilateral optic nerve crush (ONC), and to improve visual acuity in humans. These data, associated with evidence that ed-rhNGF stimulates the brain derived neurotrophic factor (BDNF) in retina and cortex, suggests that NGF might exert retino-fugal effects by affecting BDNF and its receptor TrkB. To address these questions, their expression and relationship with the GABAergic and glutamatergic transmission markers, GAD65 and GAD67, vesicular inhibitory amino acid transporter (VGAT), and vesicular glutamate transporters 1 and 2 (VGLUT-1 and VGLUT-2) were investigated in adult ONC rats contralateral and ipsilateral visual cortex (VCx). Ed-rhNGF recovers the ONC-induced alteration of GABAergic and glutamatergic markers in contralateral VCx, induces an upregulation of TrkB, which is positively correlated with BDNF precursor (proBDNF) decrease in both VCx sides, and strongly enhances TrkB+ cell soma and neuronal endings surrounded by GAD65 immuno-reactive afferents. These findings contribute to enlarging the knowledge on the mechanism of actions and cellular targets of exogenously administrated NGF, and suggest that ed-rhNGF might act by potentiating the activity-dependent TrkB expression in GAD+ cells in VCx following retina damage and/or ONC.


Assuntos
Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/metabolismo , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Microscopia Confocal , Fator de Crescimento Neural/genética , Fatores de Crescimento Neural/genética , Ratos , Proteínas Recombinantes/metabolismo , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Córtex Visual/metabolismo , Córtex Visual/fisiologia , Ácido gama-Aminobutírico/metabolismo
4.
J Neuroendocrinol ; 33(9): e13021, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34427015

RESUMO

The roles GABAergic and glutamatergic inputs in regulating the activity of the gonadotrophin-releasing hormone (GnRH) neurons at the time of the preovulatory surge remain unclear. We used expansion microscopy to compare the density of GABAergic and glutamatergic synapses on the GnRH neuron cell body and proximal dendrite in dioestrous and pro-oestrous female mice. An evaluation of all synapses immunoreactive for synaptophysin revealed that the highest density of inputs to rostral preoptic area GnRH neurons occurred within the first 45 µm of the primary dendrite (approximately 0.19 synapses µm-1 ) with relatively few synapses on the GnRH neuron soma or beyond 45 µm of the dendrite (0.05-0.08 synapses µm-1 ). Triple immunofluorescence labelling demonstrated a predominance of glutamatergic signalling with twice as many vesicular glutamate transporter 2 synapses detected compared to vesicular GABA transporter. Co-labelling with the GABAA receptor scaffold protein gephyrin and the glutamate receptor postsynaptic density marker Homer1 confirmed these observations, as well as the different spatial distribution of GABA and glutamate inputs along the dendrite. Quantitative assessments revealed no differences in synaptophysin, GABA or glutamate synapses at the proximal dendrite and soma of GnRH neurons between dioestrous and pro-oestrous mice. Taken together, these studies demonstrate that the GnRH neuron receives twice as many glutamatergic synapses compared to GABAergic synapses and that these inputs preferentially target the first 45 µm of the GnRH neuron proximal dendrite. These inputs appear to be structurally stable before the onset of pro-oestrous GnRH surge.


Assuntos
Ácido Glutâmico/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Dendritos/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia/métodos , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
5.
Neurosci Lett ; 762: 136135, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34311052

RESUMO

Pain constitutes the major non-motor symptom in Parkinson's disease (PD). Its mechanism is still poorly understood although an increase in excitation or a decrease in inhibition have been reported in preclinical studies. The aim of this study was to investigate gamma aminobutyric acid (GABA) inhibition in the 6-hydroxydopamine (6-OHDA) PD rat model. Therefore, the expression of three inhibitory markers parvalbumin, glutamate decarboxylase 67 (GAD67) and vesicular GABA transporter (VGAT) was evaluated, besides cold allodynia, in bilateral 6-OHDA lesioned rat. There was a significant increase in the expression of the three markers labeling within the spinal dorsal horn (SDH) of 6-OHDA lesioned rats. In parallel, there was also an increase of the excitatory marker protein kinase C gamma (PKCγ) . PKCγ cells have a crucial role in pain chronicity and are regulated by GABAergic influences. Central dopamine depletion induced an increase in excitation as reveled by an increase in cFOS expression upon acetone stimulus and the presence of cold allodynia. In addition, dopamine depletion induced increased expression in inhibitory markers, which may reflect a disinhibition or a decreased inhibition in 6-OHDA lesioned rats.


Assuntos
Hiperalgesia/metabolismo , Neuralgia/etiologia , Transtornos Parkinsonianos/complicações , Corno Dorsal da Medula Espinal/metabolismo , Animais , Dopamina/deficiência , Glutamato Descarboxilase/metabolismo , Masculino , Neuralgia/metabolismo , Transtornos Parkinsonianos/metabolismo , Parvalbuminas/metabolismo , Ratos , Ratos Sprague-Dawley , Substância Negra/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
6.
Mol Brain ; 14(1): 96, 2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174930

RESUMO

Reductions in the GABAergic neurotransmitter system exist across multiple brain regions in schizophrenia and encompass both pre- and postsynaptic components. While reduced midbrain GABAergic inhibitory neurotransmission may contribute to the hyperdopaminergia thought to underpin psychosis in schizophrenia, molecular changes consistent with this have not been reported. We hypothesised that reduced GABA-related molecular markers would be found in the midbrain of people with schizophrenia and that these would correlate with dopaminergic molecular changes. We hypothesised that downregulation of inhibitory neuron markers would be exacerbated in schizophrenia cases with high levels of neuroinflammation. Eight GABAergic-related transcripts were measured with quantitative PCR, and glutamate decarboxylase (GAD) 65/67 and GABAA alpha 3 (α3) (GABRA3) protein were measured with immunoblotting, in post-mortem midbrain (28/28 and 28/26 control/schizophrenia cases for mRNA and protein, respectively), and analysed by both diagnosis and inflammatory subgroups (as previously defined by higher levels of four pro-inflammatory cytokine transcripts). We found reductions (21 - 44%) in mRNA encoding both presynaptic and postsynaptic proteins, vesicular GABA transporter (VGAT), GAD1, and parvalbumin (PV) mRNAs and four alpha subunits (α1, α2, α3, α5) of the GABAA receptor in people with schizophrenia compared to controls (p < 0.05). Gene expression of somatostatin (SST) was unchanged (p = 0.485). We confirmed the reduction in GAD at the protein level (34%, p < 0.05). When stratifying by inflammation, only GABRA3 mRNA exhibited more pronounced changes in high compared to low inflammatory subgroups in schizophrenia. GABRA3 protein was expressed by 98% of tyrosine hydroxylase-positive neurons and was 23% lower in schizophrenia, though this did not reach statistical significance (p > 0.05). Expression of transcripts for GABAA receptor alpha subunits 2 and 3 (GABRA2, GABRA3) were positively correlated with tyrosine hydroxylase (TH) and dopamine transporter (DAT) transcripts in schizophrenia cases (GABRA2; r > 0.630, GABRA3; r > 0.762, all p < 0.001) but not controls (GABRA2; r < - 0.200, GABRA3; r < 0.310, all p > 0.05). Taken together, our results support a profound disruption to inhibitory neurotransmission in the substantia nigra regardless of inflammatory status, which provides a potential mechanism for disinhibition of nigrostriatal dopamine neurotransmission.


Assuntos
Biomarcadores/metabolismo , Neurônios Dopaminérgicos/patologia , Neurônios GABAérgicos/patologia , Mesencéfalo/patologia , Esquizofrenia/patologia , Adulto , Idoso , Estudos de Coortes , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Regulação da Expressão Gênica , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Humanos , Inflamação/genética , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/patologia , Parvalbuminas/metabolismo , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Esquizofrenia/genética , Somatostatina/genética , Somatostatina/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Adulto Jovem , Ácido gama-Aminobutírico
7.
Cells Dev ; 166: 203682, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33994355

RESUMO

Homeotic genes and their genomic organization show remarkable conservation across bilaterians. Consequently, the regulatory mechanisms, which control hox gene expression, are also highly conserved. The crucial presence of conserved GA rich motifs between Hox genes has been previously observed but what factor binds to these is still unknown. Previously we have reported that the vertebrate homologue of Drosophila Trl-GAF preferentially binds to GA rich regions in Evx2-hoxd13 intergenic region of vertebrate HoxD cluster. In this study, we show that the vertebrate-GAF (v-GAF) binds at known cis-regulatory elements in the HoxD complex of zebrafish and mouse. We further used morpholino based knockdown and CRISPR-cas9 knockout technique to deplete the v-GAF in zebrafish. We checked expression of the HoxD genes and found gain of the HoxD4 gene in GAF knockout embryos. Further, we partially rescued the morphological phenotypes in GAF depleted embryos by providing GAF mRNA. Our results show that GAF binds at intergenic regions of the HoxD complex and is important for maintaining the spatial domains of HoxD4 expression during embryonic development.


Assuntos
Desenvolvimento Embrionário , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Padronização Corporal/genética , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas de Peixe-Zebra/genética
8.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526663

RESUMO

The suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals, is a network structure composed of multiple types of γ-aminobutyric acid (GABA)-ergic neurons and glial cells. However, the roles of GABA-mediated signaling in the SCN network remain controversial. Here, we report noticeable impairment of the circadian rhythm in mice with a specific deletion of the vesicular GABA transporter in arginine vasopressin (AVP)-producing neurons. These mice showed disturbed diurnal rhythms of GABAA receptor-mediated synaptic transmission in SCN neurons and marked lengthening of the activity time in circadian behavioral rhythms due to the extended interval between morning and evening locomotor activities. Synchrony of molecular circadian oscillations among SCN neurons did not significantly change, whereas the phase relationships between SCN molecular clocks and circadian morning/evening locomotor activities were altered significantly, as revealed by PER2::LUC imaging of SCN explants and in vivo recording of intracellular Ca2+ in SCN AVP neurons. In contrast, daily neuronal activity in SCN neurons in vivo clearly showed a bimodal pattern that correlated with dissociated morning/evening locomotor activities. Therefore, GABAergic transmission from AVP neurons regulates the timing of SCN neuronal firing to temporally restrict circadian behavior to appropriate time windows in SCN molecular clocks.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Neurônios/metabolismo , Núcleo Supraquiasmático/metabolismo , Vasopressinas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Comportamento Animal , Cálcio/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Locomoção , Camundongos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Fatores de Tempo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/deficiência , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
9.
Neural Plast ; 2021: 8833087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33510780

RESUMO

Accumulating evidence implicates a role for brain structures outside the ascending auditory pathway in tinnitus, the phantom perception of sound. In addition to other factors such as age-dependent hearing loss, high-level sound exposure is a prominent cause of tinnitus. Here, we examined how noise exposure altered the distribution of excitatory and inhibitory synaptic inputs in the guinea pig hippocampus and determined whether these changes were associated with tinnitus. In experiment one, guinea pigs were overexposed to unilateral narrow-band noise (98 dB SPL, 2 h). Two weeks later, the density of excitatory (VGLUT-1/2) and inhibitory (VGAT) synaptic terminals in CA1, CA3, and dentate gyrus hippocampal subregions was assessed by immunohistochemistry. Overall, VGLUT-1 density primarily increased, while VGAT density decreased significantly in many regions. Then, to assess whether the noise-induced alterations were persistent and related to tinnitus, experiment two utilized a noise-exposure paradigm shown to induce tinnitus and assessed tinnitus development which was assessed using gap-prepulse inhibition of the acoustic startle (GPIAS). Twelve weeks after sound overexposure, changes in excitatory synaptic terminal density had largely recovered regardless of tinnitus status, but the recovery of GABAergic terminal density was dramatically different in animals expressing tinnitus relative to animals resistant to tinnitus. In resistant animals, inhibitory synapse density recovered to preexposure levels, but in animals expressing tinnitus, inhibitory synapse density remained chronically diminished. Taken together, our results suggest that noise exposure induces striking changes in the balance of excitatory and inhibitory synaptic inputs throughout the hippocampus and reveal a potential role for rebounding inhibition in the hippocampus as a protective factor leading to tinnitus resilience.


Assuntos
Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Ruído/efeitos adversos , Zumbido/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Estimulação Acústica/efeitos adversos , Animais , Vias Auditivas/metabolismo , Vias Auditivas/patologia , Feminino , Neurônios GABAérgicos/química , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Cobaias , Hipocampo/patologia , Masculino , Sinapses/química , Sinapses/metabolismo , Zumbido/patologia , Proteínas Vesiculares de Transporte de Glutamato/análise , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/análise
10.
Mol Neurobiol ; 58(6): 2574-2589, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33471287

RESUMO

Cell adhesion molecules (CAMs) are key players in the formation of neural circuits during development. The γ-protocadherins (γ-Pcdhs), a family of 22 CAMs encoded by the Pcdhg gene cluster, are known to play important roles in dendrite arborization, axon targeting, and synapse development. We showed previously that multiple γ-Pcdhs interact physically with the autism-associated CAM neuroligin-1, and inhibit the latter's ability to promote excitatory synapse maturation. Here, we show that γ-Pcdhs can also interact physically with the related neuroligin-2, and inhibit this CAM's ability to promote inhibitory synapse development. In an artificial synapse assay, γ-Pcdhs co-expressed with neuroligin-2 in non-neuronal cells reduce inhibitory presynaptic maturation in contacting hippocampal axons. Mice lacking the γ-Pcdhs from the forebrain (including the cortex, the hippocampus, and portions of the amygdala) exhibit increased inhibitory synapse density and increased co-localization of neuroligin-2 with inhibitory postsynaptic markers in vivo. These Pcdhg mutants also exhibit defective social affiliation and an anxiety-like phenotype in behavioral assays. Together, these results suggest that γ-Pcdhs negatively regulate neuroligins to limit synapse density in a manner that is important for normal behavior.


Assuntos
Caderinas/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Interação Social , Sinapses/metabolismo , Animais , Axônios/metabolismo , Comportamento Animal , Células COS , Proteínas Relacionadas a Caderinas , Membrana Celular/metabolismo , Chlorocebus aethiops , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Prosencéfalo/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
11.
Sleep ; 44(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33270105

RESUMO

STUDY OBJECTIVES: Sleep and wake are opposing behavioral states controlled by the activity of specific neurons that need to be located and mapped. To better understand how a waking brain falls asleep it is necessary to identify activity of individual phenotype-specific neurons, especially neurons that anticipate sleep onset. In freely behaving mice, we used microendoscopy to monitor calcium (Ca2+) fluorescence in individual hypothalamic neurons expressing the vesicular GABA transporter (vGAT), a validated marker of GABA neurons. METHODS: vGAT-Cre mice (male = 3; female = 2) transfected with rAAV-FLEX-GCaMP6M in the lateral hypothalamus were imaged 30 days later during multiple episodes of waking (W), non-rapid-eye movement sleep (NREMS) or REMS (REMS). RESULTS: 372 vGAT neurons were recorded in the zona incerta. 23.9% of the vGAT neurons showed maximal fluorescence during wake (classified as wake-max), 4% were NREM-max, 56.2% REM-max, 5.9% wake/REM max, while 9.9% were state-indifferent. In the NREM-max group, Ca2+ fluorescence began to increase before onset of NREM sleep, remained high throughout NREM sleep, and declined in REM sleep. CONCLUSIONS: We found that 60.2% of the vGAT GABA neurons in the zona incerta had activity that was biased towards sleep (NREM and REMS). A subset of vGAT neurons (NREM-max) became active in advance of sleep onset and may induce sleep by inhibiting the activity of the arousal neurons. Abnormal activation of the NREM-max neurons may drive sleep attacks and hypersomnia.


Assuntos
Zona Incerta , Animais , Feminino , Masculino , Camundongos , Sono , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Vigília , Zona Incerta/metabolismo , Ácido gama-Aminobutírico
12.
Nature ; 589(7841): 258-263, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268894

RESUMO

Animal behaviours that are superficially similar can express different intents in different contexts, but how this flexibility is achieved at the level of neural circuits is not understood. For example, males of many species can exhibit mounting behaviour towards same- or opposite-sex conspecifics1, but it is unclear whether the intent and neural encoding of these behaviours are similar or different. Here we show that female- and male-directed mounting in male laboratory mice are distinguishable by the presence or absence of ultrasonic vocalizations (USVs)2-4, respectively. These and additional behavioural data suggest that most male-directed mounting is aggressive, although in rare cases it can be sexual. We investigated whether USV+ and USV- mounting use the same or distinct hypothalamic neural substrates. Micro-endoscopic imaging of neurons positive for oestrogen receptor 1 (ESR1) in either the medial preoptic area (MPOA) or the ventromedial hypothalamus, ventrolateral subdivision (VMHvl) revealed distinct patterns of neuronal activity during USV+ and USV- mounting, and the type of mounting could be decoded from population activity in either region. Intersectional optogenetic stimulation of MPOA neurons that express ESR1 and vesicular GABA transporter (VGAT) (MPOAESR1∩VGAT neurons) robustly promoted USV+ mounting, and converted male-directed attack to mounting with USVs. By contrast, stimulation of VMHvl neurons that express ESR1 (VMHvlESR1 neurons) promoted USV- mounting, and inhibited the USVs evoked by female urine. Terminal stimulation experiments suggest that these complementary inhibitory effects are mediated by reciprocal projections between the MPOA and VMHvl. Together, these data identify a hypothalamic subpopulation that is genetically enriched for neurons that causally induce a male reproductive behavioural state, and indicate that reproductive and aggressive states are represented by distinct population codes distributed between MPOAESR1 and VMHvlESR1 neurons, respectively. Thus, similar behaviours that express different internal states are encoded by distinct hypothalamic neuronal populations.


Assuntos
Agressão/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Copulação , Receptor alfa de Estrogênio/metabolismo , Feminino , Homossexualidade Masculina , Masculino , Camundongos , Optogenética , Área Pré-Óptica/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
13.
Behav Brain Res ; 401: 112996, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33171147

RESUMO

Cannabinoid receptor type 1 (CB1R) is widely distributed in the substantia nigra pars reticulata (SNpr). However, the role of CB1R at the SNpr level in threatening situations is poorly understood. We investigated the role of CB1R in the SNpr on the expression of fear responses in mice confronted with urutu-cruzeiro pit vipers. First, a bidirectional neurotracer was injected into the SNpr; then, immunostaining of the vesicular GABA transporter was conducted at the levels of the striatum (CPu) and deep layers of the superior colliculus (dlSC). In addition, CB1R immunostaining and GABA labelling were performed in the SNpr. Using a prey-versus-snake paradigm, mice were pretreated with the CB1R antagonist AM251 (100 pmol) and treated with the endocannabinoid anandamide (AEA, 5 pmol) in the SNpr, followed by bicuculline (40 ng) in the dlSC, and were then confronted with a snake. Bidirectional neural tract tracers associated with immunofluorescence showed the GABAergic striatonigral disinhibitory and nigrotectal inhibitory pathways. Furthermore, we showed that CB1R labelling was restricted to axonal fibres surrounding SNpr GABAergic cells. We also demonstrated a decrease in the defensive behaviours of mice treated with AEA in the SNpr, but this effect was blocked by pre-treatment with AM251 in this structure. Taken together, our results show that the panicolytic consequences of the AEA enhancement in the SNpr are signalled by CB1R, suggesting that CB1R localised in axon terminals of CPu GABAergic neurons in the SNpr modulates the activity of the nigrotectal GABAergic pathway during the expression of defensive behaviours in threatening situations.


Assuntos
Comportamento Animal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Corpo Estriado/metabolismo , Cadeia Alimentar , Pânico/fisiologia , Parte Reticular da Substância Negra/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Colículos Superiores/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Animais , Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides/administração & dosagem , Antagonistas de Receptores de Canabinoides/administração & dosagem , Crotalinae , Endocanabinoides/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/metabolismo , Técnicas de Rastreamento Neuroanatômico , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Coloração e Rotulagem
14.
Brain ; 144(1): 251-265, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33221837

RESUMO

Neuronal dendritic arborizations and dendritic spines are crucial for a normal synaptic transmission and may be critically involved in the pathophysiology of epilepsy. Alterations in dendritic morphology and spine loss mainly in hippocampal neurons have been reported both in epilepsy animal models and in human brain tissues from patients with epilepsy. However, it is still unclear whether these dendritic abnormalities relate to the cause of epilepsy or are generated by seizure recurrence. We investigated fine neuronal structures at the level of dendritic and spine organization using Golgi impregnation, and analysed synaptic networks with immunohistochemical markers of glutamatergic (vGLUT1) and GABAergic (vGAT) axon terminals in human cerebral cortices derived from epilepsy surgery. Specimens were obtained from 28 patients with different neuropathologically defined aetiologies: type Ia and type II focal cortical dysplasia, cryptogenic (no lesion) and temporal lobe epilepsy with hippocampal sclerosis. Autoptic tissues were used for comparison. Three-dimensional reconstructions of Golgi-impregnated neurons revealed severe dendritic reshaping and spine alteration in the core of the type II focal cortical dysplasia. Dysmorphic neurons showed increased dendritic complexity, reduction of dendritic spines and occasional filopodia-like protrusions emerging from the soma. Surprisingly, the intermingled normal-looking pyramidal neurons also showed severe spine loss and simplified dendritic arborization. No changes were observed outside the dysplasia (perilesional tissue) or in neocortical postsurgical tissue obtained in the other patient groups. Immunoreactivities of vGLUT1 and vGAT showed synaptic reorganization in the core of type II dysplasia characterized by the presence of abnormal perisomatic baskets around dysmorphic neurons, in particular those with filopodia-like protrusions, and changes in vGLUT1/vGAT expression. Ultrastructural data in type II dysplasia highlighted the presence of altered neuropil engulfed by glial processes. Our data indicate that the fine morphological aspect of neurons and dendritic spines are normal in epileptogenic neocortex, with the exception of type II dysplastic lesions. The findings suggest that the mechanisms leading to this severe form of cortical malformation interfere with the normal dendritic arborization and synaptic network organization. The data argue against the concept that long-lasting epilepsy and seizure recurrence per se unavoidably produce a dendritic pathology.


Assuntos
Córtex Cerebral/ultraestrutura , Dendritos/ultraestrutura , Espinhas Dendríticas/ultraestrutura , Epilepsia/patologia , Sinapses/ultraestrutura , Adolescente , Adulto , Córtex Cerebral/metabolismo , Pré-Escolar , Humanos , Lactente , Microscopia Eletrônica , Pessoa de Meia-Idade , Sinapses/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Adulto Jovem
15.
Brain Struct Funct ; 225(9): 2871-2884, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33130922

RESUMO

Synaptic remodeling during early postnatal development lies behind neuronal networks refinement and nervous system maturation. In particular, the respiratory system is immature at birth and is subjected to significant postnatal development. In this context, the excitatory/inhibitory balance dramatically changes in the respiratory-related hypoglossal nucleus (HN) during the 3 perinatal weeks. Since, development abnormalities of hypoglossal motor neurons (HMNs) are associated with sudden infant death syndrome and obstructive sleep apnea, deciphering molecular partners behind synaptic remodeling in the HN is of basic and clinical relevance. Interestingly, a transient expression of the neuronal isoform of nitric oxide (NO) synthase (NOS) occurs in HMNs at neonatal stage that disappears before postnatal day 21 (P21). NO, in turn, is a determining factor for synaptic refinement in several physiopathological conditions. Here, intracerebroventricular chronic administration (P7-P21) of the broad spectrum NOS inhibitor L-NAME (N(ω)-nitro-L-arginine methyl ester) differentially affected excitatory and inhibitory rearrangement during this neonatal interval in the rat. Whilst L-NAME led to a reduction in the number of excitatory structures, inhibitory synaptic puncta were increased at P21 in comparison to administration of the inactive stereoisomer D-NAME. Finally, L-NAME decreased levels of the phosphorylated form of myosin light chain in the nucleus, which is known to regulate the actomyosin contraction apparatus. These outcomes indicate that physiologically synthesized NO modulates excitatory/inhibitory balance during early postnatal development by acting as an anti-synaptotrophic and/or synaptotoxic factor for inhibitory synapses, and as a synaptotrophin for excitatory ones. The mechanism of action could rely on the modulation of the actomyosin contraction apparatus.


Assuntos
Tronco Encefálico/crescimento & desenvolvimento , Neurônios Motores/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Animais , Tronco Encefálico/metabolismo , Feminino , Glicoproteínas de Membrana , Ratos Wistar , Receptores de Interleucina-1
16.
Sci Rep ; 10(1): 19521, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177640

RESUMO

Alterations in macronutrient intake can have profound effects on energy intake and whole-body metabolism. For example, reducing protein intake increases energy expenditure, increases insulin sensitivity and decreases body weight in rodents. Fibroblast growth factor 21 (FGF21) signaling in the brain is necessary for the metabolic effects of dietary protein restriction and has more recently been proposed to promote protein preference. However, the neuron populations through which FGF21 elicits these effects are unknown. Here, we demonstrate that deletion of ß-klotho in glutamatergic, but not GABAergic, neurons abrogated the effects of dietary protein restriction on reducing body weight, but not on improving insulin sensitivity in both diet-induced obese and lean mice. Specifically, FGF21 signaling in glutamatergic neurons is necessary for protection against body weight gain and induction of UCP1 in adipose tissues associated with dietary protein restriction. However, ß-klotho expression in glutamatergic neurons was dispensable for the effects of dietary protein restriction to increase insulin sensitivity. In addition, we report that FGF21 administration does not alter protein preference, but instead promotes the foraging of other macronutrients primarily by suppressing simple sugar consumption. This work provides important new insights into the neural substrates and mechanisms behind the endocrine control of metabolism during dietary protein dilution.


Assuntos
Proteínas na Dieta/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Neurônios/metabolismo , Redução de Peso/fisiologia , Animais , Dieta com Restrição de Proteínas , Dieta Redutora , Proteínas na Dieta/química , Neurônios GABAérgicos/metabolismo , Resistência à Insulina , Proteínas Klotho , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Obesidade/dietoterapia , Obesidade/metabolismo , Transdução de Sinais , Sacarose/farmacologia , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
17.
Cell Rep ; 33(2): 108267, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053350

RESUMO

Major depressive disorder is associated with weight loss and decreased appetite; however, the signaling that connects these conditions is unclear. Here, we show that MC4R signaling in the dorsal raphe nucleus (DRN) affects feeding, anxiety, and depression. DRN infusion of α-MSH decreases DRN neuronal activation and feeding. DRN MC4R is expressed in GABAergic PRCP-producing neurons. DRN selective knockdown of PRCP (PrcpDRNKD), an enzyme inactivating α-MSH, decreases feeding and DRN neuronal activation. Interestingly, PrcpDRNKD mice present lower DRN serotonin levels and depressive-like behavior. Similarly, PRCP-ablated MC4R mice (PrcpMC4RKO) show metabolic and behavioral phenotypes comparable to those of PrcpDRNKD mice. Selective PRCP re-expression in DRN MC4R neurons of PrcpMC4RKO mice partially reverses feeding, while fully restoring mood behaviors. Chemogenetic inhibition of DRN MC4R neurons induces anxiety, depression, and reduced feeding, whereas chemogenetic activation reverses these effects. Our results indicate that MC4R signaling in DRN plays a role in feeding, anxiety, and depression.


Assuntos
Ansiedade/metabolismo , Depressão/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Comportamento Alimentar , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais , Animais , Ansiedade/complicações , Comportamento Animal , Depressão/complicações , Núcleo Dorsal da Rafe/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Melanocortinas/metabolismo , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , alfa-MSH/farmacologia
18.
Mol Brain ; 13(1): 135, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028376

RESUMO

BACKGROUND: Cerebral microinfarcts (MIs) lead to progressive cognitive impairments in the elderly, and there is currently no effective preventative strategy due to uncertainty about the underlying pathogenic mechanisms. One possibility is the dysfunction of GABAergic transmission and ensuing excitotoxicity. Dysfunction of GABAergic transmission induces excitotoxicity, which contributes to stroke pathology, but the mechanism has kept unknown. The secreted leucine-rich repeat (LRR) family protein slit homologue 2 (Slit2) upregulates GABAergic activity and protects against global cerebral ischemia, but the neuroprotective efficacy of Slit2 against MIs has not been examined. METHODS: Middle-aged Wild type (WT) and Slit2-Tg mice were divided into sham and MI treatment groups. MIs were induced in parietal cortex by laser-evoked arteriole occlusion. Spatial memory was then compared between sham and MI groups using the Morris water maze (MWM) task. In addition, neuronal activity, blood brain barrier (BBB) permeability, and glymphatic clearance in peri-infarct areas were compared using two-photon imaging, while GABAergic transmission, microglial activation, neuronal loss, and altered cortical connectivity were compared by immunofluorescent staining or western blotting. RESULTS: Microinfarcts increased the amplitude and frequency of spontaneous intracellular Ca2+ signals, reduced neuronal survival and connectivity within parietal cortex, decreased the number of GABAergic interneurons and expression of vesicular GABA transporter (VGAT), induced neuroinflammation, and impaired both glymphatic clearance and spatial memory. Alternatively, Slit2 overexpression attenuated dysfunctional neuronal Ca2+ signaling, protected against neuronal death in the peri-infarct area as well as loss of parietal cortex connectivity, increased GABAergic interneuron number and VGAT expression, attenuated neuroinflammation, and improved both glymphatic clearance and spatial memory. CONCLUSION: Our results strongly suggest that overexpression of Slit2 protected against the dysfunction in MIs, which is a potential therapeutic target for cognition impairment in the elderly.


Assuntos
Infarto Encefálico/metabolismo , Infarto Encefálico/fisiopatologia , Cognição , Sistema Glinfático/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Animais , Astrócitos/metabolismo , Axônios/patologia , Barreira Hematoencefálica/patologia , Infarto Encefálico/complicações , Contagem de Células , Neurônios GABAérgicos/metabolismo , Sistema Glinfático/fisiopatologia , Humanos , Inflamação/patologia , Ativação de Macrófagos , Macrófagos/metabolismo , Aprendizagem em Labirinto , Transtornos da Memória/complicações , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Neuroproteção , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
19.
Mol Brain ; 13(1): 127, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948209

RESUMO

In the central nervous system, hyperpolarization-activated, cyclic nucleotide-gated (HCN1-4) channels have been implicated in neuronal excitability and synaptic transmission. It has been reported that HCN channels are expressed in the spinal cord, but knowledge about their physiological roles, as well as their distribution profiles, appear to be limited. We generated a transgenic mouse in which the expression of HCN4 can be reversibly knocked down using a genetic tetracycline-dependent switch and conducted genetically validated immunohistochemistry for HCN4. We found that the somata of HCN4-immunoreactive (IR) cells were largely restricted to the ventral part of the inner lamina II and lamina III. Many of these cells were either parvalbumin- or protein kinase Cγ (PKCγ)-IR. By using two different mouse strains in which reporters are expressed only in inhibitory neurons, we determined that the vast majority of HCN4-IR cells were excitatory neurons. Mechanical and thermal noxious stimulation did not induce c-Fos expression in HCN4-IR cells. PKCγ-neurons in this area are known to play a pivotal role in the polysynaptic pathway between tactile afferents and nociceptive projection cells that contributes to tactile allodynia. Therefore, pharmacological and/or genetic manipulations of HCN4-expressing neurons may provide a novel therapeutic strategy for the pain relief of tactile allodynia.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Interneurônios/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Animais , Especificidade de Anticorpos , Loci Gênicos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/imunologia , Luminescência , Camundongos Transgênicos , Nociceptividade , Parvalbuminas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteína Quinase C/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
20.
Exp Neurol ; 333: 113433, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32791155

RESUMO

GABAergic neurons in the rostromedial tegmental nucleus (RMTg) receive major input from the lateral habenula (LHb), which conveys negative reward and motivation related information, and project intensively to midbrain dopamine neurons, including those in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). The RMTg-VTA circuit has been shown to be linked to the affective behavior, but the role of the RMTg-SNc circuit in aversion and depression has not been well understood. This study demonstrated that exciting or inhibiting VgatRMTg-SNc neurons was sufficient to increase or decrease immobility time in the forced swim test (FST), respectively. Furthermore, exciting the VgatRMTg-SNc pathway caused aversive behavior. Ninety percent of the SNc putative dopamine neurons were inhibited in extracellular recordings. Furthermore, inhibiting the VgatRMTg-SNc pathway reversed behavioral despair in chronic restraint stress (CRS) depression model mice. Manipulations of the pathway did not affect the hedonic value of the reward in the sucrose-preference test (SPT) or general motor function. In conclusion, these results indicate that the VgatRMTg-SNc pathway regulates aversive and despair behavior, which suggests that the RMTg may mediate the role of LHb in negative behaviors through regulating the activity of SNc neurons.


Assuntos
Aprendizagem da Esquiva , Parte Compacta da Substância Negra/fisiopatologia , Estresse Psicológico/psicologia , Área Tegmentar Ventral/fisiopatologia , Anedonia , Animais , Depressão/fisiopatologia , Depressão/psicologia , Neurônios Dopaminérgicos , Feminino , Masculino , Camundongos , Atividade Motora , Neurônios , Restrição Física , Recompensa , Transdução de Sinais , Natação/psicologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...